

media service

DLG • Eschborner Landstraße 122 • 60489 Frankfurt/Main Germany • press agrar@dlg.org • www.dlg.org

Frankfurt, Germany 16. Oktober 2025

DLG-Agrifuture Concept Winners 2025 announced – Visionary Ideas in agricultural technology recognized

Five winners selected from a shortlist of eight candidates – Experts from DLG committees, academia, and international representatives determine the winners – Award ceremony on 12 November 2025 at Agritechnica – agritechnica.com

The DLG (German Agricultural Society) has today announced the five winners of its innovation award "DLG-Agrifuture Concept Winner", which honors pioneering achievements and future visions in agricultural technology. The award ceremony will take place on 12 November at Agritechnica in Hannover, from 12:30 to 13:30, on the DLG Expert Stage: "Smart Efficiency", Hall 24, Stand A06.

The winning concepts were selected via online voting by national and international experts from a shortlist compiled in September. This shortlist was created by an independent jury appointed by DLG, based on all submissions received. Exhibitors at Agritechnica 2025 are eligible to participate in the "DLG-Agrifuture Concept Winner" award.

"The DLG-Agrifuture Concept Winner Award is now in its third year, and over time it's really proven to be a signpost for the future. It's open to concepts expected to hit the market in five to ten years, so it gives us a glimpse of the trends that are that are still a way off but already shaping tomorrow's crop production," said Florian Schiller, project manager of DLG's digital agriculture, International DLG Crop Production Center.

Die DLG-Agrifuture Concept Winner 2025:

Company: AEF Agricultural Industry Electronics Foundation e.V.

Hall/Stand: 21 / C26

Product: FieldDataSync - M2M Communication to autonomize cooperative field work

Mixed fleets of agricultural machinery from different manufacturers are particularly common in Europe. While this approach offers flexibility and enables the selection of the most suitable equipment for each task, it also poses significant challenges for the integration of digital agriculture solutions. The fact that specialized functions can all too often be addressed via proprietary systems directly results in problems of compatibility and interoperability, meaning the exchange of process data or cooperation between machines is not possible. This digital fragmentation slows progress in agriculture and prevents the utilization of much of the potential of modern technologies.

The AEF's (Agricultural Industry Electronics Foundation) FieldDataSync project aims to establish radio communication between agricultural machinery to enable cooperative work. It supports the exchange of critical data such as field boundaries for coordinated tasks such as section control among multiple machines. Additional functions include video streaming and the exchange of position data to optimize tasks such as unloading into transport vehicles, group management, and diagnostics. The standard's cross-brand approach supports mixed fleets, reduces development costs, and improves interoperability. At the same time, functional safety and cybersecurity requirements are met.

FieldDataSync machines thus represent an important step toward fully autonomous field operations. The project aims to set industry standards through the AEF and is funded by the German Ministry of Agriculture, Food and Regional Identity (BMLEH)

Short text:

With FieldDataSync, the AEF is developing a standardized, wireless, and manufacturer-independent solution for secure, real-time data exchange between agricultural machines. This enables collaborative fieldwork even in remote areas without mobile reception, supporting farmers in their daily work.

Company: Al.Land Hall/Stand: 21 / F26 Product: DAVEGI

Current conventional vegetable cultivation is mechanized but not fully autonomous. It is labor-intensive, especially in planting, care, and harvesting and it is often associated with inefficient use of resources and heavily dependent on centralized logistics and packaging systems.

Al.Land's DAVEGI system is intended to combine the necessary steps of vegetable cultivation, from soil preparation to direct delivery, into a holistic approach for the first time, thus enabling a completely new process of local food supply. It is based on a robotic harvester, an autonomous,

energy-self-sufficient spot farming platform trained to mimic the sensitivity and dexterity of humans during picking, thus enabling a gentle and selective harvest. It is designed to primarily replace post-harvest steps such as centralized logistics, distribution centers, and retail. Instead, customized vegetable crates are harvested, packed, and delivered within a few hours and without disposable packaging. This shortens the path from field to fork and creates significant ecological and economic benefits: lower emissions, more efficient use of resources, and greater resilience of local agriculture. The system is currently on track to reach Technology Readiness Level 6, i.e., close to a functional prototype.

By integrating the entire value chain into a localized platform, DAVEGI supports a sustainable circular economy model while improving profitability for farmers and access to food for consumers.

Short text:

DAVEGI is an automated full-farming system for outdoor mixed vegetable cultivation. With two humanoid robotic arms, it plants, cultivates, and harvests directly on-site and just in time. This shortens the value chain and delivers fresh, regional produce within hours.

Company: Amazonen-Werke H. Dreyer

Hall/Stand: 09 / D32 Product: SoilDetect

To date, either geoelectric measurements or satellite data have been used to create yield potential maps. Although cultivator sensors are increasingly available in practice, this process data have not been used to demarcate sub-areas, and tractor data such as diesel consumption, engine speed, engine load, and speed are not included in these calculations.

The "SoilDetect" system from Amazone enables the fusion of all of the above-mentioned data for the first time. Using a multi-sensor system on the tillage implement, small-scale soil data such as soil conductivity and resistivity, as well as slope and working depth, are recorded and linked to tractor process data. All measurements are georeferenced and stored with elevation data, and the resulting terrain models are transmitted via telemetry to an evaluation system. This system incorporates satellite, soil assessment, and climate data, as well as farm-specific information, to create yield potential and field soil maps fully automatically with Al support. Field-specific notes from the farm manager or the results of soil analyses at reference points further optimize the accuracy of the results.

The implementation of a geoelectric measurement system in a standard cultivator enables, for the first time, straightforward measurements during soil cultivation and thus the creation of yield potential maps for site-specific crop production. By automating data transfer and merging it with other information sources, a basis for decision-making can be created without the need for additional specialized knowledge, and resources can be deployed in a targeted and needsbased manner.

Short text:

Amazone SoilDetect uses a multi-sensor system to capture soil properties during tillage. An Al engine combines this data with satellite maps and provides the farmer with yield potential maps. This significantly simplifies resource-efficient, site-specific crop production.

Company: SLS Systementwicklungen GmbH

Hall/Stand: 12 / B71
Product: SLS-NextDrip

Drip irrigation is the most water-efficient irrigation method. Due to the immense effort required to install and remove drip irrigation systems, these systems are currently used primarily in developing countries with low wages, particularly because the systems must be assembled largely by hand in the field. In intensive agriculture, this effort is not cost-effective and also reaches its limits with regard to site-specific adaptations, especially when the layout is too complex and on-site installation becomes error-prone.

With NextDrip, SLS has rethought the entire process of installing and removing drip irrigation systems, relocating the assembly process from the field to the factory. There, prefabricated units of several adjacent drip lines are cut to the length required for each field and location and assembled with fittings and distribution hoses. A special machine enables efficient placement in the field. In addition, this type of installation offers the option of adding metal markers to the lines, which are important for both detection systems and fully mechanized retrieval with magnetic retrieval of the line ends. Pre-assembly at the factory also allows field geometry data as well as soil or yield maps to be used for the controlled installation of site-specific drippers or valves according to yield zones.

Overall, NextDrip from SLS minimizes labor, especially manual labor, during the installation and retrieval of drip irrigation systems. By relocating the assembly process to the factory, it also creates the possibility of adapting the drip lines specifically to the site conditions.

Short text

With NextDrip, SLS has reimagined the entire process of installing and retrieving drip irrigation systems, moving the assembly process from the field to the factory. This allows various site-specific accessories to be added to the installations, making it possible for the first time to create a smart drip line.

Company: Zürn Harvesting GmbH & Co. KG

Hall/Stand: 13 / C25

Product: ZÜRN SEED SELECT

Joint development with TU Dresden und EXAgT GmbH

In agriculture, all common approaches to preventive and therapeutic plant protection have so far aimed at reducing or preventing the production of further seeds by germinated weeds. However, the spread of weed seeds by harvesting machinery has not been considered.

Zürn's Seed Select concept now addresses this problem for the first time using two drum screens mounted in a compact unit behind the sieves of a combine harvester. The weed seeds fall through these screens, while straw and chaff pass through the drums and are fed back into the chaff spreader. The separated material is killed in a devitalization unit and can then be spread on the field as organic matter without the risk of germination. Due to its small space and power requirements and its modular design, the system can be easily adapted to a variety of combine harvesters without compromising the normal function of the cleaning system or the grain loss sensors.

Zürn Seed Select is the first system for weed seed control during harvest that has the potential to break the weed cycle and improve field hygiene.

Short text:

Seed Select from Zürn is a completely new approach to mechanical weed control in the combine harvester. Weed seeds are screened out and devitalized, breaking the weed cycle and improving field hygiene.

Updates to Agritechnica 2025:

www.agritechnica.com www.systemsandcomponents.com www.facebook.com/agritechnica www.tiktok.com/@agritechnica www.instagram.com/agritechnica www.youtube.com/agritechnica www.linkedin.com/groups/3348135/ www.linkedin.com/showcase/agritechnica

Media contact:
Malene Conlong

Tel: +49 6924788237

Email: M.conlong@dlg.org

About DLG

With more than 31,000 members, DLG is a politically independent and non-profit organisation. DLG draws on an international network of some 3,000 food and agricultural experts. DLG operates with subsidiaries in 10 countries and also organizes over 30 regional agricultural and livestock exhibitions worldwide. DLG's leading international exhibitions, EuroTier for livestock farming and Agritechnica for agricultural machinery, which are held every two years in Hanover, Germany, provide international impetus for the local trade fairs. Headquartered in Frankfurt, Germany, DLG conducts practical trials and tests to keep its members informed of the latest developments. DLG's sites include DLG's International Crop Production Centre, a 600-hectare test site in Bernburg-Strenzfeld, Germany and the DLG Test Centre, Europe's largest agricultural machinery test centre for Technology and Farm Inputs, located in Gross-Umstadt, Germany. DLG bridges the gap between theory and practice, as evidenced by more than 40 working groups of farmers, academics, agricultural equipment companies and organisations that continually compare advances in knowledge in specific areas such as irrigation and precision farming.

www.dlg.org